Structure preserving model order reduction of shallow water equations

In this paper, we present two different approaches for constructing reduced‐order models (ROMs) for the two‐dimensional shallow water equation (SWE). The first one is based on the noncanonical Hamiltonian/Poisson form of the SWE. After integration in time by the fully implicit average vector field m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-01, Vol.44 (1), p.476-492
Hauptverfasser: Karasözen, Bülent, Yıldız, Süleyman, Uzunca, Murat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present two different approaches for constructing reduced‐order models (ROMs) for the two‐dimensional shallow water equation (SWE). The first one is based on the noncanonical Hamiltonian/Poisson form of the SWE. After integration in time by the fully implicit average vector field method, ROMs are constructed with proper orthogonal decomposition(POD)/discrete empirical interpolation method that preserves the Hamiltonian structure. In the second approach, the SWE as a partial differential equation with quadratic nonlinearity is integrated in time by the linearly implicit Kahan's method, and ROMs are constructed with the tensorial POD that preserves the linear‐quadratic structure of the SWE. We show that in both approaches, the invariants of the SWE such as the energy, enstrophy, mass and circulation are preserved over a long period of time, leading to stable solutions. We conclude by demonstrating the accuracy and the computational efficiency of the reduced solutions by a numerical test problem.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6751