Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions

The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t)  (α>0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-01, Vol.44 (1), p.303-314
Hauptverfasser: Luo, Jun‐Ren, Xiao, Ti‐Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 1
container_start_page 303
container_title Mathematical methods in the applied sciences
container_volume 44
creator Luo, Jun‐Ren
Xiao, Ti‐Jun
description The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t)  (α>0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform decay rate estimate for the solutions of the equation in terms of the exponent of f, when α is large enough. On the other hand, via a new hyperbolic version of Dirichlet quotients, we show that the upper estimate is optimal in some case, which implies the existence of slow solutions.
doi_str_mv 10.1002/mma.6733
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465901509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465901509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-88f89e44beaf5376129171b9cc48936db662f21c506d6065b063913a545b6ce83</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpSDyCJRaWlONLnHisylVqYYHZOI5DXTVOayet8vakLSvTv3znoh-hWwITAkAf6lpPRMbYGRoRkDIhPBPnaAQkg4RTwi_RVYwrAMgJoSP0_WiN7nHQrY24agKOtnZr560OeK93Ftttp1vX-Ij3rl3infYuLp3_waWuN4fUvsTvtqu197hoOl_q0GPT-NIdx67RRaXX0d785Rh9PT99zl6T-cfL22w6TwyVjCV5XuXScl5YXaUsE4RKkpFCGsNzyURZCEErSkwKohQg0gIEk4TplKeFMDZnY3R32rsJzbazsVWrpgt-OKkoF6kEkoIc1P1JmdDEGGylNsHVw8eKgDr0p4b-1KG_gSYnundr2__r1GIxPfpf6dpxKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465901509</pqid></control><display><type>article</type><title>Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Jun‐Ren ; Xiao, Ti‐Jun</creator><creatorcontrib>Luo, Jun‐Ren ; Xiao, Ti‐Jun</creatorcontrib><description>The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t)  (α&gt;0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform decay rate estimate for the solutions of the equation in terms of the exponent of f, when α is large enough. On the other hand, via a new hyperbolic version of Dirichlet quotients, we show that the upper estimate is optimal in some case, which implies the existence of slow solutions.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6733</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Damping ; Decay rate ; Dirichlet problem ; Mathematical analysis ; Neumann boundary condition ; nonlinear source ; optimal decay rate ; Polynomials ; Quotients ; semilinear wave equation ; slow solution ; time‐dependent frictional dissipation ; Wave equations</subject><ispartof>Mathematical methods in the applied sciences, 2021-01, Vol.44 (1), p.303-314</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-88f89e44beaf5376129171b9cc48936db662f21c506d6065b063913a545b6ce83</citedby><cites>FETCH-LOGICAL-c2933-88f89e44beaf5376129171b9cc48936db662f21c506d6065b063913a545b6ce83</cites><orcidid>0000-0003-1961-5526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6733$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6733$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Luo, Jun‐Ren</creatorcontrib><creatorcontrib>Xiao, Ti‐Jun</creatorcontrib><title>Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions</title><title>Mathematical methods in the applied sciences</title><description>The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t)  (α&gt;0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform decay rate estimate for the solutions of the equation in terms of the exponent of f, when α is large enough. On the other hand, via a new hyperbolic version of Dirichlet quotients, we show that the upper estimate is optimal in some case, which implies the existence of slow solutions.</description><subject>Boundary conditions</subject><subject>Damping</subject><subject>Decay rate</subject><subject>Dirichlet problem</subject><subject>Mathematical analysis</subject><subject>Neumann boundary condition</subject><subject>nonlinear source</subject><subject>optimal decay rate</subject><subject>Polynomials</subject><subject>Quotients</subject><subject>semilinear wave equation</subject><subject>slow solution</subject><subject>time‐dependent frictional dissipation</subject><subject>Wave equations</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpSDyCJRaWlONLnHisylVqYYHZOI5DXTVOayet8vakLSvTv3znoh-hWwITAkAf6lpPRMbYGRoRkDIhPBPnaAQkg4RTwi_RVYwrAMgJoSP0_WiN7nHQrY24agKOtnZr560OeK93Ftttp1vX-Ij3rl3infYuLp3_waWuN4fUvsTvtqu197hoOl_q0GPT-NIdx67RRaXX0d785Rh9PT99zl6T-cfL22w6TwyVjCV5XuXScl5YXaUsE4RKkpFCGsNzyURZCEErSkwKohQg0gIEk4TplKeFMDZnY3R32rsJzbazsVWrpgt-OKkoF6kEkoIc1P1JmdDEGGylNsHVw8eKgDr0p4b-1KG_gSYnundr2__r1GIxPfpf6dpxKw</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Luo, Jun‐Ren</creator><creator>Xiao, Ti‐Jun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1961-5526</orcidid></search><sort><creationdate>20210115</creationdate><title>Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions</title><author>Luo, Jun‐Ren ; Xiao, Ti‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-88f89e44beaf5376129171b9cc48936db662f21c506d6065b063913a545b6ce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Damping</topic><topic>Decay rate</topic><topic>Dirichlet problem</topic><topic>Mathematical analysis</topic><topic>Neumann boundary condition</topic><topic>nonlinear source</topic><topic>optimal decay rate</topic><topic>Polynomials</topic><topic>Quotients</topic><topic>semilinear wave equation</topic><topic>slow solution</topic><topic>time‐dependent frictional dissipation</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jun‐Ren</creatorcontrib><creatorcontrib>Xiao, Ti‐Jun</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jun‐Ren</au><au>Xiao, Ti‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>303</spage><epage>314</epage><pages>303-314</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t)  (α&gt;0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform decay rate estimate for the solutions of the equation in terms of the exponent of f, when α is large enough. On the other hand, via a new hyperbolic version of Dirichlet quotients, we show that the upper estimate is optimal in some case, which implies the existence of slow solutions.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6733</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1961-5526</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-01, Vol.44 (1), p.303-314
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2465901509
source Wiley Online Library Journals Frontfile Complete
subjects Boundary conditions
Damping
Decay rate
Dirichlet problem
Mathematical analysis
Neumann boundary condition
nonlinear source
optimal decay rate
Polynomials
Quotients
semilinear wave equation
slow solution
time‐dependent frictional dissipation
Wave equations
title Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decay%20rates%20for%20semilinear%20wave%20equations%20with%20vanishing%20damping%20and%20Neumann%20boundary%20conditions&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Luo,%20Jun%E2%80%90Ren&rft.date=2021-01-15&rft.volume=44&rft.issue=1&rft.spage=303&rft.epage=314&rft.pages=303-314&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6733&rft_dat=%3Cproquest_cross%3E2465901509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465901509&rft_id=info:pmid/&rfr_iscdi=true