Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions

The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t)  (α>0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-01, Vol.44 (1), p.303-314
Hauptverfasser: Luo, Jun‐Ren, Xiao, Ti‐Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t)  (α>0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform decay rate estimate for the solutions of the equation in terms of the exponent of f, when α is large enough. On the other hand, via a new hyperbolic version of Dirichlet quotients, we show that the upper estimate is optimal in some case, which implies the existence of slow solutions.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6733