Decay rates for semilinear wave equations with vanishing damping and Neumann boundary conditions
The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t) (α>0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform dec...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-01, Vol.44 (1), p.303-314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper is concerned with the semilinear wave equations with time‐dependent damping γ(t)=α/(1+t) (α>0), under the effect of nonlinear source f behaving like a polynomial, and subject to Neumann boundary conditions. Constructing appropriate auxiliary functions, we obtain an explicit uniform decay rate estimate for the solutions of the equation in terms of the exponent of f, when α is large enough. On the other hand, via a new hyperbolic version of Dirichlet quotients, we show that the upper estimate is optimal in some case, which implies the existence of slow solutions. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.6733 |