Some orthogonal polynomials on the finite interval and Gaussian quadrature rules for fractional Riemann‐Liouville integrals
Inspired with papers by Bokhari, Qadir, and Al‐Attas (2010) and by Rapaić, Šekara, and Govedarica (2014), in this paper we investigate a few types of orthogonal polynomials on finite intervals and derive the corresponding quadrature formulas of Gaussian type for efficient numerical computation of th...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-01, Vol.44 (1), p.493-516 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired with papers by Bokhari, Qadir, and Al‐Attas (2010) and by Rapaić, Šekara, and Govedarica (2014), in this paper we investigate a few types of orthogonal polynomials on finite intervals and derive the corresponding quadrature formulas of Gaussian type for efficient numerical computation of the left and right fractional Riemann‐Liouville integrals. Several numerical examples are included to demonstrate the numerical efficiency of the proposed procedure. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.6752 |