Needle Tip Position Accuracy Evaluation Experiment for Puncture Robot in Remote Center Control
[abstFig src='/00280006/15.jpg' width='300' text='Location of devices in the experiment' ] In recent years, a medical procedure called interventional radiology (IR) has been attracting considerable attention. Doctors can perform IR percutaneously while observing the flu...
Gespeichert in:
Veröffentlicht in: | Journal of robotics and mechatronics 2016-12, Vol.28 (6), p.911-920 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [abstFig src='/00280006/15.jpg' width='300' text='Location of devices in the experiment' ] In recent years, a medical procedure called interventional radiology (IR) has been attracting considerable attention. Doctors can perform IR percutaneously while observing the fluoroscopic image of patients. Therefore, this surgical method is less invasive. In this surgery, computed tomography (CT) equipment is often used for precise fluoroscopy. However, doctors are exposed to strong radiation from the CT equipment. In order to overcome this problem, we have developed a remote-controlled surgical assistance robot called Zerobot. In animal puncture experiment, the operation of Zerobot was based on joint control. Therefore, during a surgery, the tip of the needle moves when a surgeon orders for a change in the direction of the needle. This makes the robot less user-friendly because the surgeon tracks the trajectory of the tip of the needle. This problem can be solved by using remote center control. |
---|---|
ISSN: | 0915-3942 1883-8049 |
DOI: | 10.20965/jrm.2016.p0911 |