Pregabalin induced reproductive toxicity and body weight changes by affecting caspase3 and leptin expression: Protective role of wheat germ oil

Pregabalin (PGB) drug abuse is common among the youth. It substituted tramadol before its recent schedule as a controlled drug since April 2019. PGB is an antiepileptic drug acting on the central nervous system. It blocks calcium channels regulating the action of neurotransmitters and causing prolon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2020-11, Vol.260, p.118344-9, Article 118344
Hauptverfasser: Shokry, Dina A., El Nabrawy, Naglaa, Yassa, Hanan D., Gaber, Shereen S., Batiha, Gaber El-Saber, Welson, Nermeen N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pregabalin (PGB) drug abuse is common among the youth. It substituted tramadol before its recent schedule as a controlled drug since April 2019. PGB is an antiepileptic drug acting on the central nervous system. It blocks calcium channels regulating the action of neurotransmitters and causing prolonged depolarization. The present study aimed to investigate the toxic effect of long term pregabalin abuse on the reproductive function and body weight in both male and female albino rats and to evaluate the ameliorative effect of wheat germ oil (WGO). Forty-eight rats were randomly divided into eight groups. The first four groups were males and they were treated as follows: control group (1.5 mL saline), WGO group (1.5 mL L/kg), PGB group (300 mg/kg), and protective group (PGB + WGO). All doses were administrated once per day for 60 days by gastric gavage. The second four groups were females. They were divided and treated the same as the male groups. Pregabalin caused significant weight loss, decreased serum triglyceride level, and increased leptin gene expression in all rats. PGB affected male rats reproduction by decreasing total testosterone serum level and inhibiting spermatogenesis. Reproductive toxicity in females was caused by decreasing pituitary steroids, increasing gonadal hormones, and increasing the number of atretic ovarian follicles. Mechanism of toxicity may be attributed to the PGB oxidative stress effect that induced apoptosis and caused diffuse gonadal atrophy. WGO showed a protective effect on PGB induced toxicity as all measured parameters were relatively improved.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2020.118344