Automatic detection of COVID-19 infection using chest X-ray images through transfer learning
The new coronavirus ( COVID-19 ) , declared by the World Health Organization as a pandemic, has infected more than 1 million people and killed more than 50 thousand. An infection caused by COVID-19 can develop into pneumonia, which can be detected by a chest X-ray exam and should...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2021-01, Vol.8 (1), p.239-248 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The new coronavirus ( COVID-19 ) , declared by the World Health Organization as a pandemic, has infected more than 1 million people and killed more than 50 thousand. An infection caused by COVID-19 can develop into pneumonia, which can be detected by a chest X-ray exam and should be treated appropriately. In this work, we propose an automatic detection method for COVID-19 infection based on chest X-ray images. The datasets constructed for this study are composed of 194 X-ray images of patients diagnosed with coronavirus and 194 X-ray images of healthy patients. Since few images of patients with COVID-19 are publicly available, we apply the concept of transfer learning for this task. We use different architectures of convolutional neural networks ( CNNs ) trained on ImageNet, and adapt them to behave as feature extractors for the X-ray images. Then, the CNNs are combined with consolidated machine learning methods, such as k-Nearest Neighbor, Bayes, Random Forest, multilayer perceptron ( MLP ) , and support vector machine ( SVM ) . The results show that, for one of the datasets, the extractor-classifier pair with the best performance is the MobileNet architecture with the SVM classifier using a linear kernel, which achieves an accuracy and an F1-score of 98.5 & . For the other dataset, the best pair is DenseNet201 with MLP, achieving an accuracy and an F1-score of 95.6 & . Thus, the proposed approach demonstrates efficiency in detecting COVID-19 in X-ray images. |
---|---|
ISSN: | 2329-9266 2329-9274 |
DOI: | 10.1109/JAS.2020.1003393 |