Towards Interpretable Multilingual Detection of Hate Speech against Immigrants and Women in Twitter at SemEval-2019 Task 5

his paper describes our techniques to detect hate speech against women and immigrants on Twitter in multilingual contexts, particularly in English and Spanish. The challenge was designed by SemEval-2019 Task 5, where the participants need to design algorithms to detect hate speech in English and Spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
1. Verfasser: Alvi, Md Ishmam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:his paper describes our techniques to detect hate speech against women and immigrants on Twitter in multilingual contexts, particularly in English and Spanish. The challenge was designed by SemEval-2019 Task 5, where the participants need to design algorithms to detect hate speech in English and Spanish language with a given target (e.g., women or immigrants). Here, we have developed two deep neural networks (Bidirectional Gated Recurrent Unit (GRU), Character-level Convolutional Neural Network (CNN)), and one machine learning model by exploiting the linguistic features. Our proposed model obtained 57 and 75 F1 scores for Task A in English and Spanish language respectively. For Task B, the F1 scores are 67 for English and 75.33 for Spanish. In the case of task A (Spanish) and task B (both English and Spanish), the F1 scores are improved by 2, 10, and 5 points respectively. Besides, we present visually interpretable models that can address the generalizability issues of the custom-designed machine learning architecture by investigating the annotated dataset.
ISSN:2331-8422