A CATEGORICAL REDUCTION SYSTEM FOR LINEAR LOGIC

Diagram chasing is not an easy task. The coherence holds in a generalized sense if we have a mechanical method to judge whether given two morphisms are equal to each other. A simple way to this end is to reform a concerned category into a calculus, where the instructions for the diagram chasing are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and applications of categories 2020-01, Vol.35 (50), p.1833
1. Verfasser: Hasegawa, Ryu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diagram chasing is not an easy task. The coherence holds in a generalized sense if we have a mechanical method to judge whether given two morphisms are equal to each other. A simple way to this end is to reform a concerned category into a calculus, where the instructions for the diagram chasing are given in the form of rewriting rules. We apply this idea to the categorical semantics of the linear logic. We build a calculus directly on the free category of the semantics. It enables us to perform diagram chasing as essentially one-way computations led by the rewriting rules. We verify the weak termination property of this calculus. This gives the first step towards the mechanization of diagram chasing.
ISSN:1201-561X