If dropout limits trainable depth, does critical initialisation still matter? A large-scale statistical analysis on ReLU networks
•Recent work has shown that dropout limits the depth to which information can propagate through a neural network.•We investigate the effect of initialisation on training speed and generalisation within this depth limit.•We ask specifically: if dropout limits depth, does initialising critically still...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2020-10, Vol.138, p.95-105 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Recent work has shown that dropout limits the depth to which information can propagate through a neural network.•We investigate the effect of initialisation on training speed and generalisation within this depth limit.•We ask specifically: if dropout limits depth, does initialising critically still matter?•We conduct a large-scale controlled experiment and perform a statistical analysis of over 12 000 trained networks.•We show that at moderate depths, critical initialisation gives no performance gains over off-critical initialisations.
Recent work in signal propagation theory has shown that dropout limits the depth to which information can propagate through a neural network. In this paper, we investigate the effect of initialisation on training speed and generalisation for ReLU networks within this depth limit. We ask the following research question: given that critical initialisation is crucial for training at large depth, if dropout limits the depth at which networks are trainable, does initialising critically still matter? We conduct a large-scale controlled experiment, and perform a statistical analysis of over 12 000 trained networks. We find that (1) trainable networks show no statistically significant difference in performance over a wide range of non-critical initialisations; (2) for initialisations that show a statistically significant difference, the net effect on performance is small; (3) only extreme initialisations (very small or very large) perform worse than criticality. These findings also apply to standard ReLU networks of moderate depth as a special case of zero dropout. Our results therefore suggest that, in the shallow-to-moderate depth setting, critical initialisation provides zero performance gains when compared to off-critical initialisations and that searching for off-critical initialisations that might improve training speed or generalisation, is likely to be a fruitless endeavour. |
---|---|
ISSN: | 0167-8655 1872-7344 |
DOI: | 10.1016/j.patrec.2020.06.025 |