Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive Review
There are different applications of computer vision and digital image processing in various applied domains and automated production process. In textile industry, fabric defect detection is considered as a challenging task as the quality and the price of any textile product are dependent on the effi...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-24 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are different applications of computer vision and digital image processing in various applied domains and automated production process. In textile industry, fabric defect detection is considered as a challenging task as the quality and the price of any textile product are dependent on the efficiency and effectiveness of the automatic defect detection. Previously, manual human efforts are applied in textile industry to detect the defects in the fabric production process. Lack of concentration, human fatigue, and time consumption are the main drawbacks associated with the manual fabric defect detection process. Applications based on computer vision and digital image processing can address the abovementioned limitations and drawbacks. Since the last two decades, various computer vision-based applications are proposed in various research articles to address these limitations. In this review article, we aim to present a detailed study about various computer vision-based approaches with application in textile industry to detect fabric defects. The proposed study presents a detailed overview of histogram-based approaches, color-based approaches, image segmentation-based approaches, frequency domain operations, texture-based defect detection, sparse feature-based operation, image morphology operations, and recent trends of deep learning. The performance evaluation criteria for automatic fabric defect detection is also presented and discussed. The drawbacks and limitations associated with the existing published research are discussed in detail, and possible future research directions are also mentioned. This research study provides comprehensive details about computer vision and digital image processing applications to detect different types of fabric defects. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/8189403 |