Vision-Based Nonlinear Control of Quadrotors Using the Photogrammetric Technique
This paper presents a controller designed via the backstepping technique, for the tracking of a reference trajectory obtained via the photogrammetric technique. The dynamic equations used to represent the motion of the quadrotor helicopter are based on the Newton–Euler model. The resulting quadrotor...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a controller designed via the backstepping technique, for the tracking of a reference trajectory obtained via the photogrammetric technique. The dynamic equations used to represent the motion of the quadrotor helicopter are based on the Newton–Euler model. The resulting quadrotor model has been divided into four subsystems for the altitude, longitudinal, lateral, and yaw motions. A control input is designed for each subsystem. Furthermore, the photogrammetric technique has been used to obtain the reference trajectory to be tracked. The performance and effectiveness of the proposed nonlinear controllers have been tested via numerical simulations using the Pixhawk Pilot Support Package developed for Matlab/Simulink. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/5146291 |