Comparative Performance and Assessment Study of a Current-Fed DC-DC Resonant Converter Combining Si, SiC, and GaN-Based Power Semiconductor Devices

This paper focuses on the main reasons of low efficiency in a current-fed DC-DC resonant converter applied to photovoltaic (PV) isolated systems, comparing the effects derived by the overlapping time in the gate-signals (gate-source voltage) combining silicon (Si), silicon carbide (SiC), and gallium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-11, Vol.9 (11), p.1982
Hauptverfasser: Rodríguez-Benítez, Oscar Miguel, Ponce-Silva, Mario, Aquí-Tapia, Juan Antonio, Claudio-Sánchez, Abraham, Vela-Váldes, Luis Gerardo, Lozoya-Ponce, Ricardo Eliu, Cortés-García, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the main reasons of low efficiency in a current-fed DC-DC resonant converter applied to photovoltaic (PV) isolated systems, comparing the effects derived by the overlapping time in the gate-signals (gate-source voltage) combining silicon (Si), silicon carbide (SiC), and gallium nitride (GaN)-based power devices. The results show that unidirectional switches (metal–oxide–semiconductor field-effect transistors (MOSFETs) plus diode) present hard switching as a result of the diode preventing the MOSFET capacitance of being discharged. The effectiveness of the converter was verified with a 200-W prototype with an input voltage range of 0–30.3 V, an output voltage of 200 V, and a switching frequency of 200 kHz. The reduction losses by applying GaN versus Si and SiC technologies are 66.49% and 53.57%, respectively. Alternatively, by applying SiC versus Si devices the reduction loss is 27.84%. Finally, according to the results, 60% of losses were caused by the diodes on both switches.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9111982