Sequential convergence of AdaGrad algorithm for smooth convex optimization

We prove that the iterates produced by, either the scalar step size variant, or the coordinatewise variant of AdaGrad algorithm, are convergent sequences when applied to convex objective functions with Lipschitz gradient. The key insight is to remark that such AdaGrad sequences satisfy a variable me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Traoré, Cheik, Pauwels, Edouard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the iterates produced by, either the scalar step size variant, or the coordinatewise variant of AdaGrad algorithm, are convergent sequences when applied to convex objective functions with Lipschitz gradient. The key insight is to remark that such AdaGrad sequences satisfy a variable metric quasi-Fejér monotonicity property, which allows to prove convergence.
ISSN:2331-8422