Evaluation of changes in perfusion defect and left ventricular systolic function using Tc-99m Tetrofosmin single photon emission computed tomography over 3 month period in patients of Acute Myocardial Infarction undergoing primary angioplasty

After a primary transluminal coronary angioplasty (PTCA) following AMI (acute myocardial infarction), the perfusion defect and LV (left ventricular) function recover/change over a period of time. The analysis immediately after the procedure may not be true depiction of the exact success of the proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear medicine review. Central & Eastern Europe 2018-01, Vol.21 (1), p.1-7
Hauptverfasser: Avs, Anil Kumar, Kumar, P G, Swami, Ajay, Dinker, Yiteedra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After a primary transluminal coronary angioplasty (PTCA) following AMI (acute myocardial infarction), the perfusion defect and LV (left ventricular) function recover/change over a period of time. The analysis immediately after the procedure may not be true depiction of the exact success of the procedure. There is varying and scanty information available on the natural course of changes in these parameters after a successful PTCA. We hypothesized that majority of change occurs at 3-4 month period. Hence, we undertook this study on the natural course of recovery/changes occurring in perfusion defect size and LV function in first 3 months after primary angioplasty. 30 consecutive cases of first AMI who were taken up for Primary angioplasty were enrolled into the study. Resting MPI(Myocardial perfusion imaging) was done within 24-72 hrs of admission using Tc-99m-Tetrofosmin and after 10-14 weeks. Analysis of LVEF (left ventricular ejection fraction), summed segmental score and extent of perfusion defect was done. Images were processed using autocardiac software of emory tool box and quantification was done using QPS (quantitative perfusion SPECT) and QGS (qualitative perfusion SPECT) softwares. 20 segment scoring method was used for quantification on bull's eye images. Student t test (two tailed, dependent) was used to find the significance of study parameters on continuous scale within each group. Effect size was computed to find the effect. Pearson correlation between perfusion defect and LVEF was performed at acute stage and after 10-14 weeks. The average acute perfusion defect extent was 19.76 ± 12.89% which after 3months became 16.79 ± 12.61%. The summed segmental score changed from 14.31 ± 10.58 to 11.38 ± 10.03 and LVEF improved from 48.40 ± 13.15% to 53.37 ± 12.8%. There was significant improvement in LVEF from acute setting to 10-14 weeks (p = 0.001). There was significant lowering of summed score (p = 0.007). Perfusion defect size showed significant reduction ([ = 0.030). Three patients showed deterioration in perfusion defect size and in summed score with reduction in LVEF. Four patients had no change in any of the parameters. Correlation between perfusion defect and LVEF was strong both at baseline (r = -0.705, p < 0.001) and after 10-18 weeks (r = -0.766, [ < 0.001). The changes we found in 3 months are similar to earlier studies and also to studies using follow up at 6 months to 1 year. We feel that 3 months is a good enough time to accurately as
ISSN:1506-9680
1644-4345
DOI:10.5603/NMR.a2018.0001