Constructing and testing hypotheses of dinosaur foot motions from fossil tracks using digitization and simulation
Whilst bones present a static view of extinct animals, fossil footprints are a direct record of the activity and motion of the track maker. Deep footprints are a particularly good record of foot motion. Such footprints rarely look like the feet that made them; the sediment being heavily disturbed by...
Gespeichert in:
Veröffentlicht in: | Palaeontology 2020-11, Vol.63 (6), p.865-880 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Whilst bones present a static view of extinct animals, fossil footprints are a direct record of the activity and motion of the track maker. Deep footprints are a particularly good record of foot motion. Such footprints rarely look like the feet that made them; the sediment being heavily disturbed by the foot motion. Because of this, such tracks are often overlooked or dismissed in preference for more foot‐like impressions. However, the deeper the foot penetrates the substrate, the more motion is captured in the sediment volume. We have used deep, penetrative, Jurassic dinosaur tracks which have been naturally split into layers, to reconstruct foot motions of animals living over 200 million years ago. We consider these reconstructions to be hypotheses of motion. To test these hypotheses, we use the Discrete Element Method, in which individual particles of substrate are simulated in response to a penetrating foot model. Simulations that produce virtual tracks morphologically similar to the fossils lend support to the motion being plausible, while simulations that result in very different final tracks serve to reject the hypothesis of motion and help generate a new hypothesis. |
---|---|
ISSN: | 0031-0239 1475-4983 |
DOI: | 10.1111/pala.12502 |