Drivers of Biogeochemical Variability in a Central California Kelp Forest: Implications for Local Amelioration of Ocean Acidification

Kelp forests are among the world's most productive marine ecosystems, and they have the potential to locally ameliorate ocean acidification (OA). In order to understand the contribution of kelp metabolism to local biogeochemistry, we must first quantify the natural variability and the relative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2020-11, Vol.125 (11), p.n/a
Hauptverfasser: Hirsh, Heidi K., Nickols, Kerry J., Takeshita, Yuichiro, Traiger, Sarah B., Mucciarone, David A., Monismith, Stephen, Dunbar, Robert B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kelp forests are among the world's most productive marine ecosystems, and they have the potential to locally ameliorate ocean acidification (OA). In order to understand the contribution of kelp metabolism to local biogeochemistry, we must first quantify the natural variability and the relative contributions of physical and biological drivers to biogeochemical changes in space and time. We deployed an extensive instrument array in Monterey Bay, CA, inside and outside of a kelp forest to assess the degree to which giant kelp (Macrocystis pyrifera) locally ameliorates present‐day acidic conditions which we expect to be exacerbated by OA. Temperature, pH, and O2 variability occurred at semidiurnal, diurnal (tidal and diel), and longer upwelling event periods. Mean conditions were driven by offshore wind forcing and the delivery of upwelled water via nearshore internal bores. While near‐surface pH and O2 were similar inside and outside the kelp forest, surface pH was elevated inside the kelp compared to outside, suggesting that the kelp canopy locally increased surface pH. We observed the greatest acidification stress deeper in the water column where pCO2 reached levels as high as 1,300 μatm and aragonite undersaturation (ΩAr 
ISSN:2169-9275
2169-9291
DOI:10.1029/2020JC016320