Preimages of \(p-\)Linearized Polynomials over \(\GF{p}\)

Linearized polynomials over finite fields have been intensively studied over the last several decades. Interesting new applications of linearized polynomials to coding theory and finite geometry have been also highlighted in recent years. Let \(p\) be any prime. Recently, preimages of the \(p-\)line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Kwang Ho Kim, Mesnager, Sihem, Choe, Jong Hyok, Dok Nam Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linearized polynomials over finite fields have been intensively studied over the last several decades. Interesting new applications of linearized polynomials to coding theory and finite geometry have been also highlighted in recent years. Let \(p\) be any prime. Recently, preimages of the \(p-\)linearized polynomials \(\sum_{i=0}^{\frac kl-1} X^{p^{li}}\) and \(\sum_{i=0}^{\frac kl-1} (-1)^i X^{p^{li}}\) were explicitly computed over \(\GF{p^n}\) for any \(n\). This paper extends that study to \(p-\)linearized polynomials over \(\GF{p}\), i.e., polynomials of the shape $$L(X)=\sum_{i=0}^t \alpha_i X^{p^i}, \alpha_i\in\GF{p}.$$ Given a \(k\) such that \(L(X)\) divides \(X-X^{p^k}\), the preimages of \(L(X)\) can be explicitly computed over \(\GF{p^n}\) for any \(n\).
ISSN:2331-8422