RBF‐ENO/WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations

In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2021-01, Vol.37 (1), p.594-613
Hauptverfasser: Abedian, Rooholah, Dehghan, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 1
container_start_page 594
container_title Numerical methods for partial differential equations
container_volume 37
creator Abedian, Rooholah
Dehghan, Mehdi
description In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and convergence by locally optimizing the shape parameters. Comparing with the original WENO with Lax–Wendroff time discretization schemes of Qiu for HJ equations, the new schemes provide more accurate reconstructions and sharper solution profiles near strong discontinuous derivative. Also, the RENO/RWENO‐LW schemes are easy to implement in the existing original ENO/WENO code. Extensive numerical experiments are considered to verify the capability of the new schemes.
doi_str_mv 10.1002/num.22542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463116253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463116253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2122-419ef70ee0175f2a138378f14ca0f98886e943f36404e7dc4e9da2230a0e88d23</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2o6T2CNUlIJKKyGqslkmOauumqS1E5Uy9RGQeMM-CYGwstw_3PffSR9Cl5T0KCGsX9R5j7GIsyPUoUSKgHEWH6MOSbgMaCRfT9GZ90tCKI2o7KDs-XZ42H_eTab9eTOwTxeQg8dbWy3wWL8f9l9zKDJXGoOr3RpwZXPAmfWpg8p-6MqWhcemdHikc7uqyqJpPOq0fLMYNnW7P0cnRq88XPxlF82Gdy-DUTCe3j8MbsZByihjAacSTEIACE0iwzQNRZgIQ3mqiZFCiBgkD00Yc8IhyVIOMtOMhUQTECJjYRddtXfXrtzU4Cu1LGtXNC8V43FIacyisKGuWyp1pfcOjFo7m2u3U5SoH4mqkah-JTZsv2W3dgW7_0E1mT21jW_nZHXH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463116253</pqid></control><display><type>article</type><title>RBF‐ENO/WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations</title><source>Wiley-Blackwell Full Collection</source><creator>Abedian, Rooholah ; Dehghan, Mehdi</creator><creatorcontrib>Abedian, Rooholah ; Dehghan, Mehdi</creatorcontrib><description>In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and convergence by locally optimizing the shape parameters. Comparing with the original WENO with Lax–Wendroff time discretization schemes of Qiu for HJ equations, the new schemes provide more accurate reconstructions and sharper solution profiles near strong discontinuous derivative. Also, the RENO/RWENO‐LW schemes are easy to implement in the existing original ENO/WENO code. Extensive numerical experiments are considered to verify the capability of the new schemes.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22542</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Discretization ; finite difference method ; Hamilton–Jacobi equations ; Lax–Wendroff type time discretization ; Radial basis function ; radial basis functions interpolation ; RBF‐ENO/WENO scheme</subject><ispartof>Numerical methods for partial differential equations, 2021-01, Vol.37 (1), p.594-613</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2122-419ef70ee0175f2a138378f14ca0f98886e943f36404e7dc4e9da2230a0e88d23</citedby><cites>FETCH-LOGICAL-c2122-419ef70ee0175f2a138378f14ca0f98886e943f36404e7dc4e9da2230a0e88d23</cites><orcidid>0000-0002-2573-9755 ; 0000-0002-1739-5964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22542$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22542$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Abedian, Rooholah</creatorcontrib><creatorcontrib>Dehghan, Mehdi</creatorcontrib><title>RBF‐ENO/WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations</title><title>Numerical methods for partial differential equations</title><description>In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and convergence by locally optimizing the shape parameters. Comparing with the original WENO with Lax–Wendroff time discretization schemes of Qiu for HJ equations, the new schemes provide more accurate reconstructions and sharper solution profiles near strong discontinuous derivative. Also, the RENO/RWENO‐LW schemes are easy to implement in the existing original ENO/WENO code. Extensive numerical experiments are considered to verify the capability of the new schemes.</description><subject>Discretization</subject><subject>finite difference method</subject><subject>Hamilton–Jacobi equations</subject><subject>Lax–Wendroff type time discretization</subject><subject>Radial basis function</subject><subject>radial basis functions interpolation</subject><subject>RBF‐ENO/WENO scheme</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2o6T2CNUlIJKKyGqslkmOauumqS1E5Uy9RGQeMM-CYGwstw_3PffSR9Cl5T0KCGsX9R5j7GIsyPUoUSKgHEWH6MOSbgMaCRfT9GZ90tCKI2o7KDs-XZ42H_eTab9eTOwTxeQg8dbWy3wWL8f9l9zKDJXGoOr3RpwZXPAmfWpg8p-6MqWhcemdHikc7uqyqJpPOq0fLMYNnW7P0cnRq88XPxlF82Gdy-DUTCe3j8MbsZByihjAacSTEIACE0iwzQNRZgIQ3mqiZFCiBgkD00Yc8IhyVIOMtOMhUQTECJjYRddtXfXrtzU4Cu1LGtXNC8V43FIacyisKGuWyp1pfcOjFo7m2u3U5SoH4mqkah-JTZsv2W3dgW7_0E1mT21jW_nZHXH</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Abedian, Rooholah</creator><creator>Dehghan, Mehdi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2573-9755</orcidid><orcidid>https://orcid.org/0000-0002-1739-5964</orcidid></search><sort><creationdate>202101</creationdate><title>RBF‐ENO/WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations</title><author>Abedian, Rooholah ; Dehghan, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2122-419ef70ee0175f2a138378f14ca0f98886e943f36404e7dc4e9da2230a0e88d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Discretization</topic><topic>finite difference method</topic><topic>Hamilton–Jacobi equations</topic><topic>Lax–Wendroff type time discretization</topic><topic>Radial basis function</topic><topic>radial basis functions interpolation</topic><topic>RBF‐ENO/WENO scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abedian, Rooholah</creatorcontrib><creatorcontrib>Dehghan, Mehdi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abedian, Rooholah</au><au>Dehghan, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RBF‐ENO/WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2021-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>594</spage><epage>613</epage><pages>594-613</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and convergence by locally optimizing the shape parameters. Comparing with the original WENO with Lax–Wendroff time discretization schemes of Qiu for HJ equations, the new schemes provide more accurate reconstructions and sharper solution profiles near strong discontinuous derivative. Also, the RENO/RWENO‐LW schemes are easy to implement in the existing original ENO/WENO code. Extensive numerical experiments are considered to verify the capability of the new schemes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22542</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-2573-9755</orcidid><orcidid>https://orcid.org/0000-0002-1739-5964</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2021-01, Vol.37 (1), p.594-613
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2463116253
source Wiley-Blackwell Full Collection
subjects Discretization
finite difference method
Hamilton–Jacobi equations
Lax–Wendroff type time discretization
Radial basis function
radial basis functions interpolation
RBF‐ENO/WENO scheme
title RBF‐ENO/WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RBF%E2%80%90ENO/WENO%20schemes%20with%20Lax%E2%80%93Wendroff%20type%20time%20discretizations%20for%20Hamilton%E2%80%93Jacobi%20equations&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Abedian,%20Rooholah&rft.date=2021-01&rft.volume=37&rft.issue=1&rft.spage=594&rft.epage=613&rft.pages=594-613&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22542&rft_dat=%3Cproquest_cross%3E2463116253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463116253&rft_id=info:pmid/&rfr_iscdi=true