RBF‐ENO/WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations
In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2021-01, Vol.37 (1), p.594-613 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and convergence by locally optimizing the shape parameters. Comparing with the original WENO with Lax–Wendroff time discretization schemes of Qiu for HJ equations, the new schemes provide more accurate reconstructions and sharper solution profiles near strong discontinuous derivative. Also, the RENO/RWENO‐LW schemes are easy to implement in the existing original ENO/WENO code. Extensive numerical experiments are considered to verify the capability of the new schemes. |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.22542 |