Polyp-Net: A Multimodel Fusion Network for Polyp Segmentation
Computer-aided diagnosis of disease primarily depends on proper vision-based measurement (VBM). The traditional approach followed for diagnosis of colorectal cancer includes a manual screening of colorectum via a colonoscope and resection of polyps for histopathological analysis to decide the grade...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Computer-aided diagnosis of disease primarily depends on proper vision-based measurement (VBM). The traditional approach followed for diagnosis of colorectal cancer includes a manual screening of colorectum via a colonoscope and resection of polyps for histopathological analysis to decide the grade of malignancy. This procedure is time-consuming and expensive, and removal of benign polyp for analysis signifies the inefficiency of the diagnosis system. These drawbacks inspired us to develop an automatic vision-based analysis method for preliminary in vivo malignancy analysis of the polyp region. In this work, we have proposed a fusion-based polyp segmentation network, namely, Polyp-Net. Recently, convolutional neural networks (CNNs) have shown immense success in the domain of medical image analysis as it can exploit in-depth significant features with high discrimination capabilities. Therefore, motivated by these insights, we have proposed an enriched version of CNN with a nascent pooling mechanism, namely dual-tree wavelet pooled CNN (DT-WpCNN). The resultant segmented mask contains some surplus high-intensity regions apart from the polyp region. These shortcomings are avoided using a new variation of the region-based level-set method, namely, the local gradient weighting-embedded level-set method (LGWe-LSM), which shows a significant reduction of false-positive rate. The pixel-level fusion of the two enhanced methods shows more potentiality in the segmentation of the polyp regions. Our proposed network is trained on CVC-colon DB and tested on CVC-clinic DB. It achieves a dice score of 0.839, volume-similarity of 0.863, precision of 0.836, recall of 0.811, F1-score of 0.823, F2-score of 0.815, and Hausdorff distance of 21.796 which outperforms the existing baseline CNN's and recent state-of-the-art methods. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2020.3015607 |