Gaussian solitary waves for argument-Schrödinger equation

•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2020-12, Vol.91, p.105449, Article 105449
1. Verfasser: Yamano, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105449
container_title Communications in nonlinear science & numerical simulation
container_volume 91
creator Yamano, Takuya
description •The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity.
doi_str_mv 10.1016/j.cnsns.2020.105449
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461618910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570420302793</els_id><sourcerecordid>2461618910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c2cef5fd05aa331b835875b5305213e23e7576efcfd74be5314c3e790293e0413</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAjaRWKf4N06QWKAKClIlFsDacpxxcdQ6rZ0UcTEuwMVwCWtWM3p634zeQ-iS4BnBpLhuZ8ZHH2cU04MiOK-O0ISUsswllfw47RjLXEjMT9FZjC1OVCX4BN0s9BCj0z6L3dr1OnxmH3oPMbNdyHRYDRvwff5i3sP3V-P8CkIGu0H3rvPn6MTqdYSLvzlFbw_3r_PHfPm8eJrfLXPDGOlzQw1YYRsstE5CXTJRSlELhgUlDCgDKWQB1thG8hoEI9wkrcK0YoA5YVN0Nd7dhm43QOxV2w3Bp5eK8oIUpKwITi42ukzoYgxg1Ta4TcqjCFaHklSrfktSh5LUWFKibkcKUoC9g6CiceANNC6A6VXTuX_5HxrrcQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461618910</pqid></control><display><type>article</type><title>Gaussian solitary waves for argument-Schrödinger equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yamano, Takuya</creator><creatorcontrib>Yamano, Takuya</creatorcontrib><description>•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2020.105449</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact solutions ; Gaussons ; Logarithmic nonlinearity ; Nonlinear equations ; Nonlinear Schrödinger equation ; Nonlinearity ; Normal distribution ; Schrodinger equation ; Solitary waves ; Waveforms</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2020-12, Vol.91, p.105449, Article 105449</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c2cef5fd05aa331b835875b5305213e23e7576efcfd74be5314c3e790293e0413</citedby><cites>FETCH-LOGICAL-c331t-c2cef5fd05aa331b835875b5305213e23e7576efcfd74be5314c3e790293e0413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2020.105449$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Yamano, Takuya</creatorcontrib><title>Gaussian solitary waves for argument-Schrödinger equation</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity.</description><subject>Exact solutions</subject><subject>Gaussons</subject><subject>Logarithmic nonlinearity</subject><subject>Nonlinear equations</subject><subject>Nonlinear Schrödinger equation</subject><subject>Nonlinearity</subject><subject>Normal distribution</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Waveforms</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAjaRWKf4N06QWKAKClIlFsDacpxxcdQ6rZ0UcTEuwMVwCWtWM3p634zeQ-iS4BnBpLhuZ8ZHH2cU04MiOK-O0ISUsswllfw47RjLXEjMT9FZjC1OVCX4BN0s9BCj0z6L3dr1OnxmH3oPMbNdyHRYDRvwff5i3sP3V-P8CkIGu0H3rvPn6MTqdYSLvzlFbw_3r_PHfPm8eJrfLXPDGOlzQw1YYRsstE5CXTJRSlELhgUlDCgDKWQB1thG8hoEI9wkrcK0YoA5YVN0Nd7dhm43QOxV2w3Bp5eK8oIUpKwITi42ukzoYgxg1Ta4TcqjCFaHklSrfktSh5LUWFKibkcKUoC9g6CiceANNC6A6VXTuX_5HxrrcQ0</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Yamano, Takuya</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202012</creationdate><title>Gaussian solitary waves for argument-Schrödinger equation</title><author>Yamano, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c2cef5fd05aa331b835875b5305213e23e7576efcfd74be5314c3e790293e0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Exact solutions</topic><topic>Gaussons</topic><topic>Logarithmic nonlinearity</topic><topic>Nonlinear equations</topic><topic>Nonlinear Schrödinger equation</topic><topic>Nonlinearity</topic><topic>Normal distribution</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamano, Takuya</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamano, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian solitary waves for argument-Schrödinger equation</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2020-12</date><risdate>2020</risdate><volume>91</volume><spage>105449</spage><pages>105449-</pages><artnum>105449</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2020.105449</doi></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2020-12, Vol.91, p.105449, Article 105449
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2461618910
source Elsevier ScienceDirect Journals Complete
subjects Exact solutions
Gaussons
Logarithmic nonlinearity
Nonlinear equations
Nonlinear Schrödinger equation
Nonlinearity
Normal distribution
Schrodinger equation
Solitary waves
Waveforms
title Gaussian solitary waves for argument-Schrödinger equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20solitary%20waves%20for%20argument-Schr%C3%B6dinger%20equation&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Yamano,%20Takuya&rft.date=2020-12&rft.volume=91&rft.spage=105449&rft.pages=105449-&rft.artnum=105449&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2020.105449&rft_dat=%3Cproquest_cross%3E2461618910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461618910&rft_id=info:pmid/&rft_els_id=S1007570420302793&rfr_iscdi=true