Gaussian solitary waves for argument-Schrödinger equation
•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic non...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2020-12, Vol.91, p.105449, Article 105449 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105449 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 91 |
creator | Yamano, Takuya |
description | •The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential.
We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity. |
doi_str_mv | 10.1016/j.cnsns.2020.105449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461618910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570420302793</els_id><sourcerecordid>2461618910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c2cef5fd05aa331b835875b5305213e23e7576efcfd74be5314c3e790293e0413</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAjaRWKf4N06QWKAKClIlFsDacpxxcdQ6rZ0UcTEuwMVwCWtWM3p634zeQ-iS4BnBpLhuZ8ZHH2cU04MiOK-O0ISUsswllfw47RjLXEjMT9FZjC1OVCX4BN0s9BCj0z6L3dr1OnxmH3oPMbNdyHRYDRvwff5i3sP3V-P8CkIGu0H3rvPn6MTqdYSLvzlFbw_3r_PHfPm8eJrfLXPDGOlzQw1YYRsstE5CXTJRSlELhgUlDCgDKWQB1thG8hoEI9wkrcK0YoA5YVN0Nd7dhm43QOxV2w3Bp5eK8oIUpKwITi42ukzoYgxg1Ta4TcqjCFaHklSrfktSh5LUWFKibkcKUoC9g6CiceANNC6A6VXTuX_5HxrrcQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461618910</pqid></control><display><type>article</type><title>Gaussian solitary waves for argument-Schrödinger equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yamano, Takuya</creator><creatorcontrib>Yamano, Takuya</creatorcontrib><description>•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential.
We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2020.105449</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact solutions ; Gaussons ; Logarithmic nonlinearity ; Nonlinear equations ; Nonlinear Schrödinger equation ; Nonlinearity ; Normal distribution ; Schrodinger equation ; Solitary waves ; Waveforms</subject><ispartof>Communications in nonlinear science & numerical simulation, 2020-12, Vol.91, p.105449, Article 105449</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c2cef5fd05aa331b835875b5305213e23e7576efcfd74be5314c3e790293e0413</citedby><cites>FETCH-LOGICAL-c331t-c2cef5fd05aa331b835875b5305213e23e7576efcfd74be5314c3e790293e0413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2020.105449$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Yamano, Takuya</creatorcontrib><title>Gaussian solitary waves for argument-Schrödinger equation</title><title>Communications in nonlinear science & numerical simulation</title><description>•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential.
We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity.</description><subject>Exact solutions</subject><subject>Gaussons</subject><subject>Logarithmic nonlinearity</subject><subject>Nonlinear equations</subject><subject>Nonlinear Schrödinger equation</subject><subject>Nonlinearity</subject><subject>Normal distribution</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Waveforms</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAjaRWKf4N06QWKAKClIlFsDacpxxcdQ6rZ0UcTEuwMVwCWtWM3p634zeQ-iS4BnBpLhuZ8ZHH2cU04MiOK-O0ISUsswllfw47RjLXEjMT9FZjC1OVCX4BN0s9BCj0z6L3dr1OnxmH3oPMbNdyHRYDRvwff5i3sP3V-P8CkIGu0H3rvPn6MTqdYSLvzlFbw_3r_PHfPm8eJrfLXPDGOlzQw1YYRsstE5CXTJRSlELhgUlDCgDKWQB1thG8hoEI9wkrcK0YoA5YVN0Nd7dhm43QOxV2w3Bp5eK8oIUpKwITi42ukzoYgxg1Ta4TcqjCFaHklSrfktSh5LUWFKibkcKUoC9g6CiceANNC6A6VXTuX_5HxrrcQ0</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Yamano, Takuya</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202012</creationdate><title>Gaussian solitary waves for argument-Schrödinger equation</title><author>Yamano, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c2cef5fd05aa331b835875b5305213e23e7576efcfd74be5314c3e790293e0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Exact solutions</topic><topic>Gaussons</topic><topic>Logarithmic nonlinearity</topic><topic>Nonlinear equations</topic><topic>Nonlinear Schrödinger equation</topic><topic>Nonlinearity</topic><topic>Normal distribution</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamano, Takuya</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamano, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian solitary waves for argument-Schrödinger equation</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2020-12</date><risdate>2020</risdate><volume>91</volume><spage>105449</spage><pages>105449-</pages><artnum>105449</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential.
We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2020.105449</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2020-12, Vol.91, p.105449, Article 105449 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_journals_2461618910 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Exact solutions Gaussons Logarithmic nonlinearity Nonlinear equations Nonlinear Schrödinger equation Nonlinearity Normal distribution Schrodinger equation Solitary waves Waveforms |
title | Gaussian solitary waves for argument-Schrödinger equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20solitary%20waves%20for%20argument-Schr%C3%B6dinger%20equation&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Yamano,%20Takuya&rft.date=2020-12&rft.volume=91&rft.spage=105449&rft.pages=105449-&rft.artnum=105449&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2020.105449&rft_dat=%3Cproquest_cross%3E2461618910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461618910&rft_id=info:pmid/&rft_els_id=S1007570420302793&rfr_iscdi=true |