Gaussian solitary waves for argument-Schrödinger equation

•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2020-12, Vol.91, p.105449, Article 105449
1. Verfasser: Yamano, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2020.105449