Gaussian solitary waves for argument-Schrödinger equation
•The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential. We present localized analytical solutions of the logarithmic non...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2020-12, Vol.91, p.105449, Article 105449 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •The logarithmic nonlinear Schrödinger equation has Gaussian shaped solitons.•Solitary solutions under the quadratic potential in one dimension is given.•The dispersion relation is time-dependent due to the imaginary damping potential.
We present localized analytical solutions of the logarithmic nonlinear Schrödinger equation, i.e., the so-called the argument-Schrödinger equation. The Gaussian solitary waveform is shown to be the solution, and we obtain the explicit form in a one-dimensional case when the dynamics evolve under a quadratic potential. The dispersion relation becomes time-dependent due to the logarithmic nonlinearity. |
---|---|
ISSN: | 1007-5704 1878-7274 |
DOI: | 10.1016/j.cnsns.2020.105449 |