Direct Classification of Emotional Intensity

In this paper, we present a model that can directly predict emotion intensity score from video inputs, instead of deriving from action units. Using a 3d DNN incorporated with dynamic emotion information, we train a model using videos of different people smiling that outputs an intensity score from 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Ouyang, Jacob, Galatzer-Levy, Isaac R, Koesmahargyo, Vidya, Zhang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a model that can directly predict emotion intensity score from video inputs, instead of deriving from action units. Using a 3d DNN incorporated with dynamic emotion information, we train a model using videos of different people smiling that outputs an intensity score from 0-10. Each video is labeled framewise using a normalized action-unit based intensity score. Our model then employs an adaptive learning technique to improve performance when dealing with new subjects. Compared to other models, our model excels in generalization between different people as well as provides a new framework to directly classify emotional intensity.
ISSN:2331-8422