Weakly Equivariant Classification of Small Covers over a Product of Simplicies
Given a dimension function \(\omega\), we define a notion of an \(\omega\)-vector weighted digraph and an \(\omega\)-equivalence between them. Then we establish a bijection between the weakly \((\mathbb{Z}/2)^n\)-equivariant homeomorphism classes of small covers over \(\Delta^{n_1}\times\cdots \time...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a dimension function \(\omega\), we define a notion of an \(\omega\)-vector weighted digraph and an \(\omega\)-equivalence between them. Then we establish a bijection between the weakly \((\mathbb{Z}/2)^n\)-equivariant homeomorphism classes of small covers over \(\Delta^{n_1}\times\cdots \times \Delta^{n_k}\) and the set of \(\omega\)-equivalence classes of \(\omega\)-vector weighted digraphs with \(k\)-labeled vertices. As an example, we obtain a formula for the number of weakly \((\mathbb{Z}/2)^n\)-equivariant homeomorphism classes of small covers over a product of three simplices. |
---|---|
ISSN: | 2331-8422 |