Slowly varying modes in a two-dimensional duct with shear flow and lined walls
A slowly varying modes solution of Wentzel–Kramers–Brillouin type is derived for the problem of sound propagation in a slowly varying two-dimensional duct with homentropic inviscid sheared mean flow and acoustically lined walls of slowly varying impedance. The modal shape function and axial wavenumb...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-01, Vol.906, Article A23 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A slowly varying modes solution of Wentzel–Kramers–Brillouin type is derived for the problem of sound propagation in a slowly varying two-dimensional duct with homentropic inviscid sheared mean flow and acoustically lined walls of slowly varying impedance. The modal shape function and axial wavenumber are described by the Pridmore-Brown eigenvalue equation. The slowly varying modal amplitude is determined in the usual way by an equation resulting from a solvability condition. For a general mean flow, this equation can be solved in the form of an incomplete adiabatic invariant. Due to conservation of specific mean vorticity along streamlines, two simplifications prove possible for a linearly sheared mean flow: (i) an analytically exact approximation for the mean flow, and (ii) a complete adiabatic invariant for the acoustics. For this last configuration some example cases are evaluated numerically, where the Pridmore-Brown eigenvalue problem is solved by a Galerkin projection combined with an efficient nonlinear iteration. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2020.687 |