Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions

The final 10 Myr of the Paleozoic saw two of the biggest biological crises in Earth history: the middlePermian extinction (often termed the Guadalupian–Lopingian extinction [GLE]) that was followed 7–8 Myr later by Earth's most catastrophic loss of diversity, the Permian–Triassic mass extinctio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Paleobiology 2020-11, Vol.46 (4), p.511-532
Hauptverfasser: Feng, Yan, Song, Haijun, Bond, David P. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The final 10 Myr of the Paleozoic saw two of the biggest biological crises in Earth history: the middlePermian extinction (often termed the Guadalupian–Lopingian extinction [GLE]) that was followed 7–8 Myr later by Earth's most catastrophic loss of diversity, the Permian–Triassic mass extinction (PTME). These crises are not only manifest as sharp decreases in biodiversity and—particularly for the PTME—total ecosystem collapse, but they also drove major changes in biological morphological characteristics such as the Lilliput effect. The evolution of test size among different clades of foraminifera during these two extinction events has been less studied. We analyzed a global database of foraminiferal test size (volume) including 20,226 specimens in 464 genera, 98 families, and 9 suborders from 632 publications. Our analyses reveal significant reductions in foraminiferal mean test size across the Guadalupian/Lopingian boundary (GLB) and the Permian/Triassic boundary (PTB), from 8.89 to 7.60 log10 µm3 (lg µm3) and from 7.25 to 5.82 lg µm3, respectively. The decline in test size across the GLB is a function of preferential extinction of genera exhibiting gigantism such as fusulinoidean fusulinids. Other clades show little change in size across the GLB. In contrast, all Lopingian suborders in our analysis (Fusulinina, Lagenina, Miliolina, and Textulariina) experienced a significant decrease in test size across the PTB, mainly due to size-biased extinction and within-lineage change. The PTME was clearly a major catastrophe that affected many groups simultaneously, and the GLE was more selective, perhaps hinting at a subtler, less extreme driver than the later PTME.
ISSN:0094-8373
1938-5331
DOI:10.1017/pab.2020.37