Slow Continued Fractions and Permutative Representations of ${\mathcal{O}}_{N}

Representations of the Cuntz algebra ${\mathcal{O}}_{N}$ are constructed from interval dynamical systems associated with slow continued fraction algorithms introduced by Giovanni Panti. Their irreducible decomposition formulas are characterized by using the modular group action on real numbers, as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2020-12, Vol.63 (4), p.787-801
1. Verfasser: Linden, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Representations of the Cuntz algebra ${\mathcal{O}}_{N}$ are constructed from interval dynamical systems associated with slow continued fraction algorithms introduced by Giovanni Panti. Their irreducible decomposition formulas are characterized by using the modular group action on real numbers, as a generalization of results by Kawamura, Hayashi, and Lascu. Furthermore, a certain symmetry of such an interval dynamical system is interpreted as a covariant representation of the $C^{\ast }$-dynamical system of the “flip-flop” automorphism of ${\mathcal{O}}_{2}$.
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439519000821