Unified Performance Analysis of Multi-Hop FSO Systems Over Double Generalized Gamma Turbulence Channels With Pointing Errors

Free space optical (FSO) communication systems provide high bandwidth in unregulated spectrum and act as a powerful line-of-sight wireless connectivity solution. The performance of FSO systems can be seriously impaired by fading as a result of atmospheric turbulence and/or pointing errors due to mis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2020-11, Vol.19 (11), p.7732-7746
Hauptverfasser: Ashrafzadeh, Behnam, Zaimbashi, Amir, Soleimani-Nasab, Ehsan, Uysal, Murat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Free space optical (FSO) communication systems provide high bandwidth in unregulated spectrum and act as a powerful line-of-sight wireless connectivity solution. The performance of FSO systems can be seriously impaired by fading as a result of atmospheric turbulence and/or pointing errors due to misalignment. In the context of FSO systems, relaying was proposed as an effective fading mitigation technique due to the fact that the variance is distance-dependent in turbulence channels. In this article, we present a unified performance analysis of multi-hop FSO systems over Double Generalized Gamma (DGG) turbulence channels with pointing error impairments. We assume amplify-and-forward relaying and consider both heterodyne detection and intensity modulation with direct detection. We derive tight closed-form expressions for the outage probability and bit error probability of both fixed-gain and channel state information (CSI)-assisted relaying in terms of the bivariate Fox-H functions and Fox-H functions, respectively. We further analyze asymptotic behavior of the outage probability in terms of simple elementary functions and obtain the achievable diversity orders. Diversity gain is found to be a function of atmospheric turbulence parameters, pointing error, detection type and the number of hops. Monte Carlo simulation results are further provided to verify the accuracy of the derived expressions.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2020.3015780