Relativistic Electron Microbursts as High‐Energy Tail of Pulsating Aurora Electrons

In this study, by simulating the wave‐particle interactions, we show that subrelativistic/relativistic electron microbursts form the high‐energy tail of pulsating aurora (PsA). Whistler‐mode chorus waves that propagate along the magnetic field lines at high latitudes cause precipitation bursts of el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2020-11, Vol.47 (21), p.n/a
Hauptverfasser: Miyoshi, Y., Saito, S., Kurita, S., Asamura, K., Hosokawa, K., Sakanoi, T., Mitani, T., Ogawa, Y., Oyama, S., Tsuchiya, F., Jones, S. L., Jaynes, A. N., Blake, J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, by simulating the wave‐particle interactions, we show that subrelativistic/relativistic electron microbursts form the high‐energy tail of pulsating aurora (PsA). Whistler‐mode chorus waves that propagate along the magnetic field lines at high latitudes cause precipitation bursts of electrons with a wide energy range from a few kiloelectron volts (PsA) to several megaelectron volts (relativistic microbursts). The rising tone elements of chorus waves cause individual microbursts of subrelativistic/relativistic electrons and the internal modulation of PsA with a frequency of a few hertz. The chorus bursts for a few seconds cause the microburst trains of subrelativistic/relativistic electrons and the main pulsations of PsA. Our simulation studies demonstrate that both PsA and relativistic electron microbursts originate simultaneously from pitch angle scattering by chorus wave‐particle interactions along the field line. Plain Language Summary Pulsating aurora electron and relativistic electron microbursts are precipitation bursts of electrons from the magnetosphere to the thermosphere and the mesosphere with energies ranging from a few kiloelectron volts to tens of kiloelectron volts and subrelativistic/relativistic, respectively. Our computer simulation shows that pulsating aurora electron (low energy) and relativistic electron microbursts (relativistic energy) are the same product of chorus wave‐particle interactions, and relativistic electron microbursts are high‐energy tail of pulsating aurora electrons. The relativistic electron microbursts contribute to significant loss of the outer belt electrons, and our results suggest that the pulsating aurora activity can be often used as a proxy of the radiation belt flux variations. Key Points We demonstrate that subrelativistic/relativistic electron microbursts are the high‐energy tail of pulsating aurora electrons Our simulation studies demonstrate that both pulsating aurora and relativistic electron microbursts originate simultaneously Pulsating aurora electron and relativistic electron microbursts are the same product of chorus wave‐particle interactions
ISSN:0094-8276
1944-8007
DOI:10.1029/2020GL090360