A Puncturing Device that Mimics the Mechanism of Mosquito’s Proboscis and Labium - Verification of the Effect of Skin Deformation / Needle Buckling Prevention Mechanism and Puncture Experiment on Artificial Skin and Experimental Animals
This paper proposes a mechanism for preventing needle buckling and skin deformation by mimicking the mosquito’s labium and discusses a puncturing device with a jig-integrated microneedle, based on the proposed mechanism. A sheet simplifying this mechanism was attached to an artificial skin’s surface...
Gespeichert in:
Veröffentlicht in: | International journal of automation technology 2020-01, Vol.14 (1), p.117-127 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a mechanism for preventing needle buckling and skin deformation by mimicking the mosquito’s labium and discusses a puncturing device with a jig-integrated microneedle, based on the proposed mechanism. A sheet simplifying this mechanism was attached to an artificial skin’s surface, and experiments to puncture this artificial skin and corresponding finite element method (FEM) analysis were conducted. It was confirmed that the deformation of the puncture target and the puncture resistance force decreased with the use of the sheet. Based on these experimental and FEM-analytical results, a puncturing device with a jig-integrated needle has been designed and fabricated with 3D laser lithography. Experiments have been conducted with the fabricated device to puncture an artificial skin and the skin of a nude mouse to determine needle buckling prevention and the reduction in skin deformation. The study successfully samples blood from the mouse without stagnation of blood flow. |
---|---|
ISSN: | 1881-7629 1883-8022 |
DOI: | 10.20965/ijat.2020.p0117 |