Cyclic quadrilaterals and smooth Jordan curves

For every smooth Jordan curve \(\gamma\) and cyclic quadrilateral \(Q\) in the Euclidean plane, we show that there exists an orientation-preserving similarity taking the vertices of \(Q\) to \(\gamma\). The proof relies on the theorem of Polterovich and Viterbo that an embedded Lagrangian torus in \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Greene, Joshua Evan, Lobb, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For every smooth Jordan curve \(\gamma\) and cyclic quadrilateral \(Q\) in the Euclidean plane, we show that there exists an orientation-preserving similarity taking the vertices of \(Q\) to \(\gamma\). The proof relies on the theorem of Polterovich and Viterbo that an embedded Lagrangian torus in \(\mathbb{C}^2\) has minimum Maslov number 2.
ISSN:2331-8422