Cyclic quadrilaterals and smooth Jordan curves
For every smooth Jordan curve \(\gamma\) and cyclic quadrilateral \(Q\) in the Euclidean plane, we show that there exists an orientation-preserving similarity taking the vertices of \(Q\) to \(\gamma\). The proof relies on the theorem of Polterovich and Viterbo that an embedded Lagrangian torus in \...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For every smooth Jordan curve \(\gamma\) and cyclic quadrilateral \(Q\) in the Euclidean plane, we show that there exists an orientation-preserving similarity taking the vertices of \(Q\) to \(\gamma\). The proof relies on the theorem of Polterovich and Viterbo that an embedded Lagrangian torus in \(\mathbb{C}^2\) has minimum Maslov number 2. |
---|---|
ISSN: | 2331-8422 |