The Twelvefold Way of Non-Sequential Lossless Compression

Many information sources are not just sequences of distinguishable symbols but rather have invariances governed by alternative counting paradigms such as permutations, combinations, and partitions. We consider an entire classification of these invariances called the twelvefold way in enumerative com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Taha Ameen ur Rahman, Barbehenn, Alton S, Chen, Xinan, Dbouk, Hassan, Douglas, James A, Geng, Yuncong, George, Ian, Harvill, John B, Sung Woo Jeon, Kansal, Kartik K, Lee, Kiwook, Levick, Kelly A, Li, Bochao, Li, Ziyue, Murthy, Yashaswini, Muthuveeru-Subramaniam, Adarsh, Olmez, S Yagiz, Tomei, Matthew J, Veeravalli, Tanya, Wang, Xuechao, Wayman, Eric A, Wu, Fan, Xu, Peng, Shen, Yan, Zhang, Heling, Zhang, Yibo, Zhang, Yifan, Zhao, Yibo, Basu, Sourya, Varshney, Lav R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many information sources are not just sequences of distinguishable symbols but rather have invariances governed by alternative counting paradigms such as permutations, combinations, and partitions. We consider an entire classification of these invariances called the twelvefold way in enumerative combinatorics and develop a method to characterize lossless compression limits. Explicit computations for all twelve settings are carried out for i.i.d. uniform and Bernoulli distributions. Comparisons among settings provide quantitative insight.
ISSN:2331-8422