Density of \(f\)-ideals and \(f\)-ideals in mixed small degrees
A squarefree monomial ideal is called an \(f\)-ideal if its Stanley-Reisner and facet simplicial complexes have the same \(f\)-vector. We show that \(f\)-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A squarefree monomial ideal is called an \(f\)-ideal if its Stanley-Reisner and facet simplicial complexes have the same \(f\)-vector. We show that \(f\)-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to construct \(f\)-ideals generated in small degrees. |
---|---|
ISSN: | 2331-8422 |