Density of \(f\)-ideals and \(f\)-ideals in mixed small degrees

A squarefree monomial ideal is called an \(f\)-ideal if its Stanley-Reisner and facet simplicial complexes have the same \(f\)-vector. We show that \(f\)-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: HÀ, Huy TÀi, Keiper, Graham, Mahmood, Hasan, O'Rourke, Jonathan L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A squarefree monomial ideal is called an \(f\)-ideal if its Stanley-Reisner and facet simplicial complexes have the same \(f\)-vector. We show that \(f\)-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to construct \(f\)-ideals generated in small degrees.
ISSN:2331-8422