Scaling Platinum‐Catalyzed Hydrogen Dissociation on Corrugated Surfaces
We determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single‐crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink a...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2020-11, Vol.132 (47), p.21159-21165 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21165 |
---|---|
container_issue | 47 |
container_start_page | 21159 |
container_title | Angewandte Chemie |
container_volume | 132 |
creator | Auras, Sabine V. Lent, Richard Bashlakov, Dima Piñeiros Bastidas, Jessika M. Roorda, Tycho Spierenburg, Rick Juurlink, Ludo B. F. |
description | We determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single‐crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink atoms, which is compared to the reactivity of straight A‐ and B‐type steps. Local surface coordination numbers do not adequately capture reactivity trends for H2 dissociation. We utilize the increase of reactivity with step density to determine the area over which a step causes increased dissociation. This step‐type specific reactive area extends beyond the step edge onto the (111) terrace. It defines the reaction cross‐section for H2 dissociation at the step, bypassing assumptions about contributions of individual types of surface atoms. Our results stress the non‐local nature of H2 interaction with a surface and provide insight into reactivity differences for nearly identical step sites.
Curved platinum single crystals provide stepped surface arrays featuring terraces, steps, and kinks. Linking the structural elements of these surfaces to their chemical activity towards hydrogen dissociation provides new insights into the scalability of reactivity at low‐coordinated sites, such as those featured on heterogeneous catalyst particles. |
doi_str_mv | 10.1002/ange.202005616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458726907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458726907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2726-4cccc0997b8dcb4d87159530438ddc031fbdefeff393ae00e673cfa28d3264a93</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURgdRsFa3rgOuU-_8JJNZlljbQlGhuh6mM5OQkiZ1JkHiykfwGX0Sp1R06eXC3ZzvfnAQusYwwQDkVjWlnRAgAEmK0xM0wgnBMeUJP0UjAMbijDBxji683wJASrgYoeVaq7pqyuipVl3V9Luvj89cdaoe3q2JFoNxbWmb6K7yvtVVQNomCpu3zvWl6gKz7l2htPWX6KxQtbdXP3eMXu5nz_kiXj3Ol_l0FWvCSRozHQaE4JvM6A0zGceJSCgwmhmjgeJiY2xhi4IKqiyATTnVhSKZoSRlStAxujn-3bv2tbe-k9u2d02olIQlWegQwAM1OVLatd47W8i9q3bKDRKDPOiSB13yV1cIiGPgrart8A8tpw_z2V_2G9UgcD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458726907</pqid></control><display><type>article</type><title>Scaling Platinum‐Catalyzed Hydrogen Dissociation on Corrugated Surfaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Auras, Sabine V. ; Lent, Richard ; Bashlakov, Dima ; Piñeiros Bastidas, Jessika M. ; Roorda, Tycho ; Spierenburg, Rick ; Juurlink, Ludo B. F.</creator><creatorcontrib>Auras, Sabine V. ; Lent, Richard ; Bashlakov, Dima ; Piñeiros Bastidas, Jessika M. ; Roorda, Tycho ; Spierenburg, Rick ; Juurlink, Ludo B. F.</creatorcontrib><description>We determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single‐crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink atoms, which is compared to the reactivity of straight A‐ and B‐type steps. Local surface coordination numbers do not adequately capture reactivity trends for H2 dissociation. We utilize the increase of reactivity with step density to determine the area over which a step causes increased dissociation. This step‐type specific reactive area extends beyond the step edge onto the (111) terrace. It defines the reaction cross‐section for H2 dissociation at the step, bypassing assumptions about contributions of individual types of surface atoms. Our results stress the non‐local nature of H2 interaction with a surface and provide insight into reactivity differences for nearly identical step sites.
Curved platinum single crystals provide stepped surface arrays featuring terraces, steps, and kinks. Linking the structural elements of these surfaces to their chemical activity towards hydrogen dissociation provides new insights into the scalability of reactivity at low‐coordinated sites, such as those featured on heterogeneous catalyst particles.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202005616</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Coordination numbers ; corrugated surfaces ; Crystal surfaces ; heterogeneous catalysis ; Platinum ; reaction cross-sections ; reaction mechanisms ; Reactivity ; surface chemistry</subject><ispartof>Angewandte Chemie, 2020-11, Vol.132 (47), p.21159-21165</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2726-4cccc0997b8dcb4d87159530438ddc031fbdefeff393ae00e673cfa28d3264a93</citedby><cites>FETCH-LOGICAL-c2726-4cccc0997b8dcb4d87159530438ddc031fbdefeff393ae00e673cfa28d3264a93</cites><orcidid>0000-0002-5373-9859 ; 0000-0002-9246-7913 ; 0000-0001-9137-0215 ; 0000-0001-8642-9702 ; 0000-0002-4106-9595 ; 0000-0002-8429-7782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202005616$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202005616$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Auras, Sabine V.</creatorcontrib><creatorcontrib>Lent, Richard</creatorcontrib><creatorcontrib>Bashlakov, Dima</creatorcontrib><creatorcontrib>Piñeiros Bastidas, Jessika M.</creatorcontrib><creatorcontrib>Roorda, Tycho</creatorcontrib><creatorcontrib>Spierenburg, Rick</creatorcontrib><creatorcontrib>Juurlink, Ludo B. F.</creatorcontrib><title>Scaling Platinum‐Catalyzed Hydrogen Dissociation on Corrugated Surfaces</title><title>Angewandte Chemie</title><description>We determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single‐crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink atoms, which is compared to the reactivity of straight A‐ and B‐type steps. Local surface coordination numbers do not adequately capture reactivity trends for H2 dissociation. We utilize the increase of reactivity with step density to determine the area over which a step causes increased dissociation. This step‐type specific reactive area extends beyond the step edge onto the (111) terrace. It defines the reaction cross‐section for H2 dissociation at the step, bypassing assumptions about contributions of individual types of surface atoms. Our results stress the non‐local nature of H2 interaction with a surface and provide insight into reactivity differences for nearly identical step sites.
Curved platinum single crystals provide stepped surface arrays featuring terraces, steps, and kinks. Linking the structural elements of these surfaces to their chemical activity towards hydrogen dissociation provides new insights into the scalability of reactivity at low‐coordinated sites, such as those featured on heterogeneous catalyst particles.</description><subject>Chemistry</subject><subject>Coordination numbers</subject><subject>corrugated surfaces</subject><subject>Crystal surfaces</subject><subject>heterogeneous catalysis</subject><subject>Platinum</subject><subject>reaction cross-sections</subject><subject>reaction mechanisms</subject><subject>Reactivity</subject><subject>surface chemistry</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1Kw0AURgdRsFa3rgOuU-_8JJNZlljbQlGhuh6mM5OQkiZ1JkHiykfwGX0Sp1R06eXC3ZzvfnAQusYwwQDkVjWlnRAgAEmK0xM0wgnBMeUJP0UjAMbijDBxji683wJASrgYoeVaq7pqyuipVl3V9Luvj89cdaoe3q2JFoNxbWmb6K7yvtVVQNomCpu3zvWl6gKz7l2htPWX6KxQtbdXP3eMXu5nz_kiXj3Ol_l0FWvCSRozHQaE4JvM6A0zGceJSCgwmhmjgeJiY2xhi4IKqiyATTnVhSKZoSRlStAxujn-3bv2tbe-k9u2d02olIQlWegQwAM1OVLatd47W8i9q3bKDRKDPOiSB13yV1cIiGPgrart8A8tpw_z2V_2G9UgcD0</recordid><startdate>20201116</startdate><enddate>20201116</enddate><creator>Auras, Sabine V.</creator><creator>Lent, Richard</creator><creator>Bashlakov, Dima</creator><creator>Piñeiros Bastidas, Jessika M.</creator><creator>Roorda, Tycho</creator><creator>Spierenburg, Rick</creator><creator>Juurlink, Ludo B. F.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5373-9859</orcidid><orcidid>https://orcid.org/0000-0002-9246-7913</orcidid><orcidid>https://orcid.org/0000-0001-9137-0215</orcidid><orcidid>https://orcid.org/0000-0001-8642-9702</orcidid><orcidid>https://orcid.org/0000-0002-4106-9595</orcidid><orcidid>https://orcid.org/0000-0002-8429-7782</orcidid></search><sort><creationdate>20201116</creationdate><title>Scaling Platinum‐Catalyzed Hydrogen Dissociation on Corrugated Surfaces</title><author>Auras, Sabine V. ; Lent, Richard ; Bashlakov, Dima ; Piñeiros Bastidas, Jessika M. ; Roorda, Tycho ; Spierenburg, Rick ; Juurlink, Ludo B. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2726-4cccc0997b8dcb4d87159530438ddc031fbdefeff393ae00e673cfa28d3264a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Coordination numbers</topic><topic>corrugated surfaces</topic><topic>Crystal surfaces</topic><topic>heterogeneous catalysis</topic><topic>Platinum</topic><topic>reaction cross-sections</topic><topic>reaction mechanisms</topic><topic>Reactivity</topic><topic>surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auras, Sabine V.</creatorcontrib><creatorcontrib>Lent, Richard</creatorcontrib><creatorcontrib>Bashlakov, Dima</creatorcontrib><creatorcontrib>Piñeiros Bastidas, Jessika M.</creatorcontrib><creatorcontrib>Roorda, Tycho</creatorcontrib><creatorcontrib>Spierenburg, Rick</creatorcontrib><creatorcontrib>Juurlink, Ludo B. F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auras, Sabine V.</au><au>Lent, Richard</au><au>Bashlakov, Dima</au><au>Piñeiros Bastidas, Jessika M.</au><au>Roorda, Tycho</au><au>Spierenburg, Rick</au><au>Juurlink, Ludo B. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling Platinum‐Catalyzed Hydrogen Dissociation on Corrugated Surfaces</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-11-16</date><risdate>2020</risdate><volume>132</volume><issue>47</issue><spage>21159</spage><epage>21165</epage><pages>21159-21165</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>We determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single‐crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink atoms, which is compared to the reactivity of straight A‐ and B‐type steps. Local surface coordination numbers do not adequately capture reactivity trends for H2 dissociation. We utilize the increase of reactivity with step density to determine the area over which a step causes increased dissociation. This step‐type specific reactive area extends beyond the step edge onto the (111) terrace. It defines the reaction cross‐section for H2 dissociation at the step, bypassing assumptions about contributions of individual types of surface atoms. Our results stress the non‐local nature of H2 interaction with a surface and provide insight into reactivity differences for nearly identical step sites.
Curved platinum single crystals provide stepped surface arrays featuring terraces, steps, and kinks. Linking the structural elements of these surfaces to their chemical activity towards hydrogen dissociation provides new insights into the scalability of reactivity at low‐coordinated sites, such as those featured on heterogeneous catalyst particles.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202005616</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5373-9859</orcidid><orcidid>https://orcid.org/0000-0002-9246-7913</orcidid><orcidid>https://orcid.org/0000-0001-9137-0215</orcidid><orcidid>https://orcid.org/0000-0001-8642-9702</orcidid><orcidid>https://orcid.org/0000-0002-4106-9595</orcidid><orcidid>https://orcid.org/0000-0002-8429-7782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2020-11, Vol.132 (47), p.21159-21165 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2458726907 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemistry Coordination numbers corrugated surfaces Crystal surfaces heterogeneous catalysis Platinum reaction cross-sections reaction mechanisms Reactivity surface chemistry |
title | Scaling Platinum‐Catalyzed Hydrogen Dissociation on Corrugated Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20Platinum%E2%80%90Catalyzed%20Hydrogen%20Dissociation%20on%20Corrugated%20Surfaces&rft.jtitle=Angewandte%20Chemie&rft.au=Auras,%20Sabine%20V.&rft.date=2020-11-16&rft.volume=132&rft.issue=47&rft.spage=21159&rft.epage=21165&rft.pages=21159-21165&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202005616&rft_dat=%3Cproquest_cross%3E2458726907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458726907&rft_id=info:pmid/&rfr_iscdi=true |