Scaling Platinum‐Catalyzed Hydrogen Dissociation on Corrugated Surfaces

We determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single‐crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2020-11, Vol.132 (47), p.21159-21165
Hauptverfasser: Auras, Sabine V., Lent, Richard, Bashlakov, Dima, Piñeiros Bastidas, Jessika M., Roorda, Tycho, Spierenburg, Rick, Juurlink, Ludo B. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single‐crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink atoms, which is compared to the reactivity of straight A‐ and B‐type steps. Local surface coordination numbers do not adequately capture reactivity trends for H2 dissociation. We utilize the increase of reactivity with step density to determine the area over which a step causes increased dissociation. This step‐type specific reactive area extends beyond the step edge onto the (111) terrace. It defines the reaction cross‐section for H2 dissociation at the step, bypassing assumptions about contributions of individual types of surface atoms. Our results stress the non‐local nature of H2 interaction with a surface and provide insight into reactivity differences for nearly identical step sites. Curved platinum single crystals provide stepped surface arrays featuring terraces, steps, and kinks. Linking the structural elements of these surfaces to their chemical activity towards hydrogen dissociation provides new insights into the scalability of reactivity at low‐coordinated sites, such as those featured on heterogeneous catalyst particles.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202005616