A variational discrete element method for quasistatic and dynamic elastoplasticity
Summary We propose a new discrete element method supporting general polyhedral meshes. The method can be understood as a lowest‐order discontinuous Galerkin method parametrized by the continuous mechanical parameters (Young's modulus and Poisson's ratio). We consider quasistatic and dynami...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2020-12, Vol.121 (23), p.5295-5319 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
We propose a new discrete element method supporting general polyhedral meshes. The method can be understood as a lowest‐order discontinuous Galerkin method parametrized by the continuous mechanical parameters (Young's modulus and Poisson's ratio). We consider quasistatic and dynamic elastoplasticity, and in the latter situation, a pseudoenergy conserving time‐integration method is employed. The computational cost of the time‐stepping method is moderate since it is explicit and used with a naturally diagonal mass matrix. Numerical examples are presented to illustrate the robustness and versatility of the method for quasistatic and dynamic elastoplastic evolutions. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.6460 |