A variational discrete element method for quasistatic and dynamic elastoplasticity

Summary We propose a new discrete element method supporting general polyhedral meshes. The method can be understood as a lowest‐order discontinuous Galerkin method parametrized by the continuous mechanical parameters (Young's modulus and Poisson's ratio). We consider quasistatic and dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2020-12, Vol.121 (23), p.5295-5319
Hauptverfasser: Marazzato, Frédéric, Ern, Alexandre, Monasse, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary We propose a new discrete element method supporting general polyhedral meshes. The method can be understood as a lowest‐order discontinuous Galerkin method parametrized by the continuous mechanical parameters (Young's modulus and Poisson's ratio). We consider quasistatic and dynamic elastoplasticity, and in the latter situation, a pseudoenergy conserving time‐integration method is employed. The computational cost of the time‐stepping method is moderate since it is explicit and used with a naturally diagonal mass matrix. Numerical examples are presented to illustrate the robustness and versatility of the method for quasistatic and dynamic elastoplastic evolutions.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.6460