Flip bifurcations of two systems of difference equations

This paper investigates the bifurcations of the following difference equations xn+1=axn+byne−xn,yn+1=cyn+dxne−yn,xn+1=ayn+bxne−yn,yn+1=cxn+dyne−xn, where a,b,c, and d are positive constants and the initial conditions x0 and y0 are positive numbers. Psarros, Papaschinopoulos, and Schinas (Math. Metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-11, Vol.43 (17), p.9582-9597
Hauptverfasser: Cheng, Qi, Deng, Shengfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the bifurcations of the following difference equations xn+1=axn+byne−xn,yn+1=cyn+dxne−yn,xn+1=ayn+bxne−yn,yn+1=cxn+dyne−xn, where a,b,c, and d are positive constants and the initial conditions x0 and y0 are positive numbers. Psarros, Papaschinopoulos, and Schinas (Math. Methods Appl. Sci., 2016, 39: 5216–5222) presented the semistability of the fixed point (0,0) when one eigenvalue is equal to 1 and the other eigenvalue has absolute value less than 1. In this paper, we consider another case: one eigenvalue is equal to −1. With the aid of the center manifold reduction theorem, we rigorously show that these two systems undergo flip bifurcations or generalized flip bifurcations. Moreover, the stability of the fixed point (0,0) and the existence of period‐two cycles are also given.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6625