QUASI-REAL-TIME PREDICTION OF SEEPAGE FLOW BEHAVIOR IN RIVER LEVEE DURING FLOOD BY ARTIFICIAL NEURAL NETWORK USING DEEP LEARNING

It is important to measure and predict seepage flow behavior in river levees in order to estimate the state of seepage failure in river levees. In this paper, a quasi-real-time prediction method of the water level of the foundation of the levee is proposed using a learned artificial neural network m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doboku Gakkai Ronbunshu. C, Chiken Kougaku = Journal of Japan Society of Civil Engineers, Ser. C, Geosphere Engineering Ser. C (Geosphere Engineering), 2020, Vol.76(4), pp.340-349
Hauptverfasser: TAKESHITA, Yuji, TORIGOE, Yusuke
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is important to measure and predict seepage flow behavior in river levees in order to estimate the state of seepage failure in river levees. In this paper, a quasi-real-time prediction method of the water level of the foundation of the levee is proposed using a learned artificial neural network model based on the water level changes of the river and the foundation of the levee in the event of a flood. For this purpose, the changes in the measured water levels of the river and the foundation of the levee were trained by an artificial neural network model using deep learning method during past flood events. The usefulness and validity of the proposed water level prediction method were verified by using actual water levels measured at two first-class river levees at four flood events.
ISSN:2185-6516
DOI:10.2208/jscejge.76.4_340