Ethyl cyanoacrylate ordered porous films prepared via in‐situ polymerization and static breath figures process
Ordered microporous films were fabricated via static breath figure process and in situ polymerization of ethyl cyanoacrylate (ECA) monomers. The influences of various parameters including solvent type (dichloromethane and chloroform), ECA concentration (0.2 and 1 wt%), temperature (17°C and 26°C), a...
Gespeichert in:
Veröffentlicht in: | Polymers for advanced technologies 2020-12, Vol.31 (12), p.3104-3113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ordered microporous films were fabricated via static breath figure process and in situ polymerization of ethyl cyanoacrylate (ECA) monomers. The influences of various parameters including solvent type (dichloromethane and chloroform), ECA concentration (0.2 and 1 wt%), temperature (17°C and 26°C), and substrate (glass, mica, PE, PP, and PET) were investigated on the structure of breath Figure (BF) films. Highly ordered porous films were generally formed at lower concentration of ECA and at 17°C for dichloromethane (DCM) and at 26°C for chloroform (CLF). The pores average diameter (D̅) of the films were in the range of 1 to 5 μm. The formation of regular porous structures were elucidated using the Marangoni (thermocapillary) convection flow and the rate of the polymer precipitation around the water droplets. There were an optimum ΔT (the temperature difference between the air and the solution surface) to create ordered BF film, regardless of solvent type. The prepared films have potential for templating applications. |
---|---|
ISSN: | 1042-7147 1099-1581 |
DOI: | 10.1002/pat.5035 |