On angles, projections and iterations

We investigate connections between the geometry of linear subspaces and the convergence of the alternating projection method for linear projections. The aim of this article is twofold: in the first part, we show that even in Euclidean spaces the convergence of the alternating method is not determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-10, Vol.603, p.41-56
Hauptverfasser: Bargetz, Christian, Klemenc, Jona, Reich, Simeon, Skorokhod, Natalia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate connections between the geometry of linear subspaces and the convergence of the alternating projection method for linear projections. The aim of this article is twofold: in the first part, we show that even in Euclidean spaces the convergence of the alternating method is not determined by the principal angles between the subspaces involved. In the second part, we investigate the properties of the Oppenheim angle between two linear projections. We discuss, in particular, the question of existence and uniqueness of “consistency projections” in this context.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2020.05.023