A tool for symmetry breaking and multiplicity in some nonlocal problems
We prove some basic inequalities relating the Gagliardo‐Nirenberg seminorms of a symmetric function u on Rn and of its perturbation uφμ, where φμ is a suitably chosen eigenfunction of the Laplace‐Beltrami operator on the sphere Sn−1, thus providing a technical but rather powerful tool to detect symm...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-11, Vol.43 (16), p.9345-9357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove some basic inequalities relating the Gagliardo‐Nirenberg seminorms of a symmetric function
u on
Rn and of its perturbation
uφμ, where
φμ is a suitably chosen eigenfunction of the Laplace‐Beltrami operator on the sphere
Sn−1, thus providing a technical but rather powerful tool to detect symmetry breaking and multiplicity phenomena in variational equations driven by the fractional Laplace operator. A concrete application to a problem related to the fractional Caffarelli‐Kohn‐Nirenberg inequality is given. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.6220 |