A tool for symmetry breaking and multiplicity in some nonlocal problems

We prove some basic inequalities relating the Gagliardo‐Nirenberg seminorms of a symmetric function u on Rn and of its perturbation uφμ, where φμ is a suitably chosen eigenfunction of the Laplace‐Beltrami operator on the sphere Sn−1, thus providing a technical but rather powerful tool to detect symm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-11, Vol.43 (16), p.9345-9357
Hauptverfasser: Musina, Roberta, Nazarov, Alexander I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove some basic inequalities relating the Gagliardo‐Nirenberg seminorms of a symmetric function u on Rn and of its perturbation uφμ, where φμ is a suitably chosen eigenfunction of the Laplace‐Beltrami operator on the sphere Sn−1, thus providing a technical but rather powerful tool to detect symmetry breaking and multiplicity phenomena in variational equations driven by the fractional Laplace operator. A concrete application to a problem related to the fractional Caffarelli‐Kohn‐Nirenberg inequality is given.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6220