Vector Perturbation Precoding for Multi-User CoMP Downlink Transmission
This paper focuses on the design of vector perturbation (VP) precoding for coordinated multi-point (CoMP) multi-user downlink transmission. Precoding is performed by individual base stations (BSs) in a distributed manner using only the downlink channel coefficients and user data local to a BS. A cas...
Gespeichert in:
Veröffentlicht in: | IEEE access 2015, Vol.3, p.1491-1502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the design of vector perturbation (VP) precoding for coordinated multi-point (CoMP) multi-user downlink transmission. Precoding is performed by individual base stations (BSs) in a distributed manner using only the downlink channel coefficients and user data local to a BS. A cascade precoder structure with an outer precoder managing the inter-cell interference (ICI) and an inner precoder performing mean-squared-error (MSE) minimization-based VP to mitigate the intra-cell interference is proposed. Three different outer precoding techniques are considered. In the first technique, the outer precoder is designed to fully eliminate the ICI by trading off the degrees of freedom (DoFs) available through multiple antennas. While the proposed technique outperforms existing conventional-VP based designs, a large portion of DoF is consumed by the ICI elimination. To overcome this issue, in the second technique, interference alignment-based outer precoding that minimizes the total leakage interference is proposed. To further improve the system performance, in the third approach, precoding by joint minimization of total leakage interference plus MSE is performed. Numerical results show that the proposed cascade precoding structure is an efficient way to use the DoF of CoMP multi-user downlink transmission. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2015.2475237 |