Revisiting Genetic Network Programming (GNP): Towards the Simplified Genetic Operators

Genetic network programming (GNP) is a relatively new type of graph-based evolutionary algorithm, which designs a directed graph structure for its individual representation. A number of studies have demonstrated its expressive ability to model complicated problems/systems and explored it from the pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.43274-43289
Hauptverfasser: Li, Xianneng, Yang, Huiyan, Yang, Meihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic network programming (GNP) is a relatively new type of graph-based evolutionary algorithm, which designs a directed graph structure for its individual representation. A number of studies have demonstrated its expressive ability to model complicated problems/systems and explored it from the perspectives of methodologies and applications. However, the unique features of its directed graph are relatively unexplored, which cause unnecessary dilemma for the further usage and promotion. This paper is dedicated to uncover this issue systematically and theoretically. It is proved that the traditional GNP with uniform genetic operators does not consider the "transition by necessity" feature of the directed graph, which brings the unnecessary difficulty of evolution to cause invalid/negative evolution problems. Consequently, simplified genetic operators are developed to address these problems. Experimental results on two benchmark testbeds of the agent control problems are carried out to demonstrate its superiority over the traditional GNP and the state-of-the-art algorithms in terms of fitness results, search speed, and computation time.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2864253