Omission Error Analysis in Gravity Gradient Measurement

Gravity gradient plays an important role in many fields of science, and many methods are used to achieve the measurement of it. To improve measurement accuracy, various error analyses have been conducted in previous studies about positioning and orientation errors and system noise, among others. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.31703-31714
Hauptverfasser: Wei, Hongwei, Wu, Meiping, Cao, Juliang, Lian, Junxiang, Cai, Shaokun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gravity gradient plays an important role in many fields of science, and many methods are used to achieve the measurement of it. To improve measurement accuracy, various error analyses have been conducted in previous studies about positioning and orientation errors and system noise, among others. However, knowledge on the influence of omission errors from the theoretical models of gravity gradient measurement is limited. In this paper, we investigated omission errors in gravity gradient measurement, which was accomplished with the principle of differential acceleration. First, we determined the source of the omission errors to be the omission of high-order terms. Second, we calculated these terms on the basis of the Earth Gravitational Model 2008. Specifically, the expression of the partial derivative of the high order for the gravity potential in the spherical coordinates and the recursive equations for the high-order partial derivatives of the Legendre function were derived. Moreover, we transformed these high-order terms from the spherical coordinate system to the local north-oriented frame. The analysis led to three findings. First, a positive correlation was found between the omission errors and the distance between two measuring points. Second, the influences of the omission errors varied across different regions. Third, \Gamma _{zz} was the least affected by the omission errors among the components \Gamma _{xz} , \Gamma _{yz} , and \Gamma _{zz} . In conclusion, our study demonstrates that omission errors affect gravity gradient measurement.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2840155