Cloud Service Scheduling Algorithm Research and Optimization

We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS). In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2017-01, Vol.2017 (2017), p.1-7
Hauptverfasser: Fang, Yajun, Zhang, Honggang, Yu, Tao, Liu, Xiaofei, Cui, Hongyan, Xia, Zongguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS). In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective function and use an Ant Colony Optimization (ACO) and a Genetic Algorithm (GA) to solve the problem of cloud task scheduling. Simulation results show that the convergence speed and output performance of our Genetic Algorithm-Chaos Ant Colony Optimization (GA-CACO) are optimal.
ISSN:1939-0114
1939-0122
DOI:10.1155/2017/2503153