Secure Multiparty Computation and Trusted Hardware: Examining Adoption Challenges and Opportunities
When two or more parties need to compute a common result while safeguarding their sensitive inputs, they use secure multiparty computation (SMC) techniques such as garbled circuits. The traditional enabler of SMC is cryptography, but the significant number of cryptographic operations required result...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2019-01, Vol.2019 (2019), p.1-28 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When two or more parties need to compute a common result while safeguarding their sensitive inputs, they use secure multiparty computation (SMC) techniques such as garbled circuits. The traditional enabler of SMC is cryptography, but the significant number of cryptographic operations required results in these techniques being impractical for most real-time, online computations. Trusted execution environments (TEEs) provide hardware-enforced isolation of code and data in use, making them promising candidates for making SMC more tractable. This paper revisits the history of improvements to SMC over the years and considers the possibility of coupling trusted hardware with SMC. This paper also addresses three open challenges: (1) defeating malicious adversaries, (2) mobile-friendly TEE-supported SMC, and (3) a more general coupling of trusted hardware and privacy-preserving computation. |
---|---|
ISSN: | 1939-0114 1939-0122 |
DOI: | 10.1155/2019/1368905 |