Noninteractive Lightweight Privacy-Preserving Auditing on Images in Mobile Crowdsourcing Networks

To determine whether images on the crowdsourcing server meet the mobile user’s requirement, an auditing protocol is desired to check these images. However, before paying for images, the mobile user typically cannot download them for checking. Moreover, since mobiles are usually low-power devices and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Guo, Xiaojun, Zhang, Chunyu, Wan, Changsheng, Zhang, Juan, Chen, Yongyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine whether images on the crowdsourcing server meet the mobile user’s requirement, an auditing protocol is desired to check these images. However, before paying for images, the mobile user typically cannot download them for checking. Moreover, since mobiles are usually low-power devices and the crowdsourcing server has to handle a large number of mobile users, the auditing protocol should be lightweight. To address the above security and efficiency issues, we propose a novel noninteractive lightweight privacy-preserving auditing protocol on images in mobile crowdsourcing networks, called NLPAS. Since NLPAS allows the mobile user to check images on the crowdsourcing server without downloading them, the newly designed protocol can provide privacy protection for these images. At the same time, NLPAS uses the binary convolutional neural network for extracting features from images and designs a novel privacy-preserving Hamming distance computation algorithm for determining whether these images on the crowdsourcing server meet the mobile user’s requirement. Since these two techniques are both lightweight, NLPAS can audit images on the crowdsourcing server in a privacy-preserving manner while still enjoying high efficiency. Experimental results show that NLPAS is feasible for real-world applications.
ISSN:1939-0114
1939-0122
DOI:10.1155/2020/8827364