An Efficient Encrypted Floating-Point Representation Using HEAAN and TFHE
As a method of privacy-preserving data analysis (PPDA), a fully homomorphic encryption (FHE) has been in the spotlight recently. Unfortunately, because many data analysis methods assume that the type of data is of real type, the FHE-based PPDA methods could not support the enough level of accuracy d...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2020, Vol.2020 (2020), p.1-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a method of privacy-preserving data analysis (PPDA), a fully homomorphic encryption (FHE) has been in the spotlight recently. Unfortunately, because many data analysis methods assume that the type of data is of real type, the FHE-based PPDA methods could not support the enough level of accuracy due to the nature of FHE that fixed-point real-number representation is supported easily. In this paper, we propose a new method to represent encrypted floating-point real numbers on top of FHE. The proposed method is designed to have analogous range and accuracy to 32-bit floating-point number in IEEE 754 representation. We propose a method to perform arithmetic operations and size comparison operations. The proposed method is designed using two different FHEs, HEAAN and TFHE. As a result, HEAAN is proven to be very efficient for arithmetic operations and TFHE is efficient in size comparison. This study is expected to contribute to practical use of FHE-based PPDA. |
---|---|
ISSN: | 1939-0114 1939-0122 |
DOI: | 10.1155/2020/1250295 |