Outsourcing Hierarchical Threshold Secret Sharing Scheme Based on Reputation
Secret sharing is a basic tool in modern communication, which protects privacy and provides information security. Among the secret sharing schemes, fairness is a vital and desirable property. To achieve fairness, the existing secret sharing schemes either require a trusted third party or the executi...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2019-10, Vol.2019, p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Secret sharing is a basic tool in modern communication, which protects privacy and provides information security. Among the secret sharing schemes, fairness is a vital and desirable property. To achieve fairness, the existing secret sharing schemes either require a trusted third party or the execution of a multiround protocol, which are impractical. Moreover, the classic scheme requires expensive computing in the secret verification phase. In this work, we provide an outsourcing hierarchical threshold secret sharing (HTSS) protocol based on reputation. In the scheme, participants from different levels can fairly reconstruct the secret, and the protocol only needs to run for one round. A cloud service provider (CSP) uses powerful computing resources to help participants complete homomorphic encryption and complex verification operations, and the CSP cannot be aware of any valuable information. The participants can obtain the secret with a small number of operations. To avoid collusion, we suppose that participants have their own reputation value, and they are punished or rewarded according to their behavior. The reputation value of a participant who deviates from the protocol will decrease; therefore, the participant will choose a cooperative strategy to obtain better payoffs. Lastly, our scheme is proved to be secure, and experiments indicate that our scheme is feasible and efficient. |
---|---|
ISSN: | 1939-0114 1939-0122 |
DOI: | 10.1155/2019/6989383 |